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Summary. A matrix-multiplication based implementation of the two-electron 
integral transformation is compared to the "optimized" algorithm recently 
presented by Hurley, Huestis and Goddard. In spite of its poorer operation 
count, the matrix-multiplication based program runs significantly faster on 
the Alliant FX/8 than the code described by Hurley et al. Our code also uses 
much less memory, but requires more disk storage. Trade-offs between the 
requirements for disk storage, central memory, number of computing ele- 
ments and CPU time are also discussed. 
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1. Introduction 

Hurley, Huestis and Goddard [1] (HHG) recently described their implementation 
of a two-electron-integral transformation procedure for the Alliant FX/8 com- 
puter. In order to decide on the best procedure, HHG first analyzed various 
schemes for their approximate floating point operation count. They adopted 
what they called the "modified full index symmetry method" since it has the 
smallest operation count. They further noted that in this method the inner loop 
was executed concurrently on all the processors. As the inner loop is also 
vectorized, they were able to make use of both the vector and concurrent features 
of the Alliant. 

Analyzing the various implementations based solely on operation count 
usually leads to the most efficient code on a scalar machine. However, on vector 
computers all operations are not equivalent, and therefore the analysis of 
operation count and the level of vectorization are coupled. We have developed 
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two transformations, the first for the CRAY computers based on matrix multipli- 
cation, and a second for the CYBER 205 based on the linked triad operation 
Y = Y + a x X (commonly called a SAXPY or DAXPY [2]). The CYBER 205 
implementation is similar to that of H H G  and holds the transformed integrals in 
memory. The implementation for the CRAY is based on the Yoshimine method 
[3] and does not require significant core storage. In this article we report on the 
performance of our transformation on the Alliant. The matrix multiplication 
based transformation was dismissed by H H G  due to its operation count, but we 
show that it yields superior performance to that reported by HHG. 

The code designed by H H G  minimizes disk storage, but requires a very large 
central memory as all the transformed integral are held in core. On a machine 
with several CPUs (each main CPU on the Alliant is called a computing element, 
or CE), it is logical to allocate the memory and disk resources based on the 
number of CEs actually being used by each job. For example, a job that used 
only one of n CPUs should be allowed to use only 1/n of the memory and 1/n of 
the disk space. Since the results presented by H H G  showed that their transfor- 
mation became rather inefficient when the number of CEs was increased from 4 
to 8, it would probably be best to limit it to run on 4 CEs and hence use only 
half the memory. Thus when a large calculation is to be performed using the 
H H G  algorithm, one must choose between two unpleasant options: either using 
all of the CEs inefficiently for the transformation, or using only 4CEs for the 
transformation, and therefore forcing the remaining CEs to run a limited subset 
of  jobs that require little memory. If  a sufficient number of jobs requiring little 
memory do not exist, the latter option will also result in inefficient use of some 
CEs. It is well known that it is possible to design a transformation that requires 
much less memory, but more disk storage than that described by HHG. Since 
either memory or disk usage might become the limiting factor, it is clear that 
CPU time might not become the sole factor in designing a program. In this 
manuscript we discuss such trade-offs as well as the design of the matrix 
multiplcation based transformation. 

2. Two-electron-integral transformation 

The first step in ab initio electronic structure calculations is to compute the 
two-electron integrals over atomic (or symmetry) orbitals (AOs), where the 
two-electron integrals are given as 

= Aijkl 

For a basis set of size n, it is clear from this formula that fewer than n 4 integrals 
are unique. The list of the n4/8 unique integrals can be formed by ordering the 
integrals such that i ~>j and k ~>/, and the compound index/j  is greater than or 
equal to the compound index kl, where a compound index is defined as 
/j = i * ( i -  1)/2 + j .  In principle it is possible to directly solve the correlation 
problem using these integrals; however, in practice it leads to an intractable 
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problem. Therefore in a preliminary calculation, an optimal set of molecular 
orbitals (MOs), ~b, are determined, where 

ck~, = ~ ziC~,. 
i = 1  

Then an approximate solution to the correlation problem is obtained using these 
molecular orbitals. However, in most of these treatments it is beneficial to 
transform the two-electron integrals from the AO to MO basis set 

Z ~  = ~ Ci= Cj~A;jkt Ck~ G~. 
i jkl  

The one-electron integrals, H, are transformed in a similar manner 

ij 

Since the one-electron transformation converts the labels /j into ~/~ it is also 
called a two-index transformation. If the one- and two-electron integrals are 
transformed one at a time, the processes are of order n 4 and n 8, respectively. 
However, it is clear that all of  the one-electron integrals can be transformed at 
one time by two matrix multiplications 

Y = CrHC 

thus reducing the process to n 3. In a similar manner, the two-electron transfor- 
mation can be reduced to n 5. This is discussed in detail by HHG,  and has been 
discussed previously by other authors [3-6], and we do not repeat it in detail 
here. 

We use the methods described by Yoshimine [3] and Bender [4]. The Bender 
method is similar to that discussed by H H G  and under some circumstances we 
use it when there is sufficient space to hold the transformed integrals in memory. 
In the Yoshimine algorithm the (ijlkl) integrals are transformed to (/j[~fl) in a 
series of  two-index transformations. The integrals are then transposed to (aft ](j) 
and transformed to (ctfl 1~6). In this way the two-electron transformation is 
reduced to a series of  one-electron-like transformations. Since the integrals are 
transformed in a series of  steps, at no time are all the transformed integrals held 
in memory and therefore only little memory is required. While the memory 
required is rather modest, the half-transformed integrals, ((/l~fl), must be held on 
disk. Thus the requirements for this transformation are very different from that 
of HHG.  We now discuss the organization of our transformation. 

3. Code organization 

In our implementation, we store the two-electron integrals (ijlkl) one row per 
record, with all kl values for each/j,  that is we ignore the ( / j ) - (kl )  permutational 
symmetry. The row can be stored with zeros included or with only the non-zeros 
(and information about their position in the uncompressed row). In all of  the 
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results reported in this article, the rows are stored with the zeros. The transfor- 
mation code is then divided into two half transformations. The first half is 
organized as follows: 

1) a kl row of two-electron integrals is read, 

2) a square matrix of integrals is formed from the lower triangle of kl integrals, 

3) the (/j [kl) integrals are transformed to (ijl~fl) with two matrix multiplications, 

4) the square matrix of transformed integrals is compressed into a lower triangle 
by discarding the redundant integrals, and 

5) the transformed integrals are moved into bins and when the bin is full it is 
written to disk. This is the first half of the transposition of the integrals to 

Steps 1-5 are repeated for each (/. 
The second half of the transformation is organized as follows: 

6) a batch of integrals are moved from disk into memory finishing the transposi- 
tion of the half-transformed integrals, 

7) for each ~fl row currently in memory, the transform to (aft 1~6) is completed 
using two matrix multiplications, and 

8) The block of fully transformed integrals are written to disk. 

Steps 6-8 are repeated until all the integrals are transformed. 
Unlike HHG we use REAL*8 variables throughout. This is important when 

very accurate calculations are to be performed, since as the basis sets become 
more complete, higher accuracy in the transformed integrals is required to avoid 
numerical problems. The program is all in FORTRAN except for the matrix 
multiplication where we use the Alliant library [7] routine "matmul". Using a 
FORTRAN matrix multiplication has only a small (about 3%) effect on the time 
required. (Note that this is very different from the CRAY computers where the 
library matrix multiply is much faster than the FORTRAN code. Further, 
unrolling the matrix muliplication on the Alliant degrades performance; this is 
also different from the CRAY, where unrolling greatly improves the performance 
of the FORTRAN code.) We compile the program with optimization for 
vectorization, scalar and concurrency. We run it on one, two and four CEs (our 
system has only four CEs). The time (user plus system) is determined using the 
library routine [7] "etime". We report some breakdown of the timing using 
"gprof" [7]. 

Memory usage can always be traded for disk storage, but until recently this 
was not really practical as central memories were quite limited in size. Now, 
however, computers have very large memories and therefore codes can be 
designed to use this feature. In the matrix multiply based transformation, the 
half-transformed integrals instead of the transformed integrals could be held in 
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memory, but this would require more storage than the Bender or H H G  methods, 
especially in those cases where the number of MOs is significantly less than the 
number of AOs. Our method, in addition to using disk space to store the 
half-transformed integrals, also uses twice the storage of  the AO integrals due to 
the elimination of  the (ij)-(kl) symmetry. However, as we show below it uses 
only about  half the CPU time. That is, our code was developed for a system with 
a very large disk capacity where CPU time is the limiting factor. 

4. Results 

Our code is most easily thought of  as a series of two-index transformations. Each 
two-index transformation is two matrix multiplications which are of  order n 3. All 
other steps are of  order n 2. In addition to these two steps, there is system time 
and some time not accounted for with gprof. Therefore we break the timing 
down into the three steps, denoted n 2, n ~ and overhead. The timings for the 
transformation of  the two-electron integrals for C2F 4 and C2F 6 are summarized 
in Table 1 along with the results of  HHG.  For  both C:F4 and CEF6, the time for 
our implementation on one CE is less than half that reported by HHG.  Of the 
total time in our transformation 78-82% is spent in matrix multiplication. When 
the number of  processors is increased, the time in matrix multiplication decreases 
with only a small loss of efficiency. However, the overhead and n 2 steps do not 
show the same decrease. This is perhaps not too surprising since the IO, and 
hence the sort, is not easily done in parallel. The net result is that the overall 
transformation shows a significant overhead with concurrency. For  two proces- 
sors we have an efficiency of  87% and for four it has dropped t o  70%. In the 
H H G  algorithm the integrals are not sorted, but held in core, and this scheme 
therefore shows a performance improvement with number of  processors more 
like that observed in the matrix multiplication step in our program. The efficiency 
is 97%, 88% and 68%, so even their algorithm shows a marked decline in 
efficiency when the number of  CEs is expanded from 4 to 8. Clearly neither our 
code nor that of H H G  would be suited to a machine with a very large number 
of  processors. 

There is one additional point that we wish to make. We have shown that by 
using a different algorithm the two-electron-integral transformation can be 
performed in about half the time reported b y  HHG.  However, up to this point 
we have ignored the use of  symmetry. O n  a scalar machine one might process 
symmetry zeros and accidental zeros in the same manner, but to achieve the best 
vectorization the testing of zeros must be eliminated. (Some improvement could 
be obtained by using a matrix multiplication that accounts for the sparseness of  
the integral or coefficient matrices, but it does not appear possible to account for 
sparseness in both matrices efficiently.) However, it is still possible to make use 
of  the symmetry zeros by sorting the integrals by symmetry blocks, and ordering 
them within each block in a manner similar to the no symmetry case. The 
integrals are then transformed one symmetry block at a time; in this way one 
large transformation is reduced to a series of  small transformations. For  CzF4, 
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Table 1. The transformation time, in seconds, on the Alliant FX/8 
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1 CE 2 CE 

Time %a Time 
C2F4 54 basis functions 
Present work 

4 CE 

% Ratio b Time % Ratio 

n 3 205 78 104 69 
n 2 43 16 31 20 
Overhead 14 5 16 11 
Total 261 151 
HHG c 544 277 
HHG/PW d 2.08 1.83 

C2F 6 72 basis functions 
Present work 

1.96 54 57 3.79 
1.38 25 26 1.73 
0.83 17 18 0.81 
1.72 95 2.74 
1.96 154 3.53 

1.62 

n 3 859 82 421 70 2.04 221 60 3.88 
n 2 136 13 103 17 1.32 80 21 1.70 
Overhead 55 5 77 13 0.71 71 19 0.77 
Total 1050 601 1.75 372 2.82 
HHG 2170 1132 1.92 625 3.47 
HHG/PW 2.07 1.89 1.68 

a Percent of the total time 
b Ratio is the time for 1 CE divided by the time on n CEs 
c HHG [1] 
d Ratio of total time for HHG to that in present work 

i f  D2h s y m m e t r y  is used,  the t r ans fo rma t ion  t ime is reduced  to 34 seconds  on one 
CE. N o t e  tha t  when symmet ry  is used, this case is so small  tha t  only  4 seconds  
are  spent  in mat r ix  mul t ip l ica t ion .  Thus  in a very large case the use o f  symmet ry  
will yield an  even larger  savings. This  i l lustrates  tha t  while using an  a lgo r i t hm 
tha t  vector izes  be t te r  can  m a k e  a fac tor  o f  two improvement ,  it  is ac tua l ly  far  
be t te r  to design the p r o g r a m  to m a k e  use o f  symmetry ,  in spite o f  some a d d e d  
complexi ty ,  since this can  represent  an  o rde r  o f  magn i tude  improvement .  

As  no ted  above  we have also imp lemen ted  a modi f ied  vers ion o f  the Bender  
m e t h o d  ( inc luding  symmetry) ,  and  our  t imes are  s imilar  to  those  r epor t ed  by  
H H G .  Tha t  is a b o u t  a fac tor  o f  two s lower than  the mat r ix  mul t ip l i ca t ion  based  
app roach .  I t  is in teres t ing to note  tha t  on a C R A Y  X -M P/48  c o m p u t e r  (wi th  a 
9.5 ns clock) the 54 basis  set t r a n s f o r m a t i o n  requires  only  a b o u t  10 seconds  using 
ei ther  the mat r ix  mul t ip l i ca t ion  o r  Bender  me thod .  This  is a b o u t  4 t imes faster  
than  the t r a n s f o r m a t i o n  designed for  the C R A Y - 1  by  Saunders  and  van  Lenthe  
[6] (no te  we have scaled their  C P U  t ime by  the ra t io  9.5/12.5 to account  for  the 
difference in cycle t ime between the C R A Y - 1  and  the C R A Y  X-MP) .  Thei r  
a lgor i thm,  like tha t  o f  H H G ,  is based  on  using the (ij)-(kl) p e r m u t a t i o n a l  
symmetry ,  but  requires  the same s torage  o f  ha l f - t r ans fo rmed  integrals  as our  
code.  The  decis ion to implement  ei ther  the ma t r ix -mul t ip l i ca t ion  based  me thod  
o r  the Saunders  and  van Lenthe  on  a C R A Y  would  depend  on the p rob lems  to 
be run  and  system conf igura t ion .  F o r  example  i f  one p l anned  to use large A O  
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basis sets, but to transform to only limited MO sets on a system that had limited 
disk storage, the Saunders and van Lenthe method would probably be the best. 
Thus even on a supercomputer one might compromise CPU time for disk storage: 
the ideal implementation depends on the specific configuration of the computer 
to be used. 

In performing calculations on a CYBER 205, we have found that our matrix 
multiplication based algorithm worked poorly even for modest sized matrices 
because of  the large vector overhead. Therefore we have implemented a modified 
version of the Bender method, since this produces SAXPY operations with long 
vector lengths that are ideally suited for the CYBER 205. This method generally 
required significantly less time than the matrix multiplication based approach on 
the CYBER 205. Thus, the "optimal" transformation varies due to machine 
hardware as well as the specific configuration of  memory and disk resources. Since 
our code has both the Bender and Yoshimine transformation, the optimal 
performance can be obtained on a variety of current computers. Furthermore, we 
make explicit use of symmetry, as the formation of two-electron integrals over 
symmetry orbitals increases the cost of  integral generation only slightly [8], 
introduces almost no overhead into calculations, and can represent an order of  
magnitude savings in computer time. In spite of  this flexibility, the transformation 
is one of  the simplest codes in our program system. 

5. Conclusion 

We have shown that a different implementation for the two-electron integral 
transformation than that reported by H H G  yields superior performance even 
though it has a higher operation count. This is an illustration of  the need to 
consider the combination of  the operation count and extent of  vectorization when 
designing a code for modern vector computers. In addition to the question of  CPU 
performance, disk storage and memory requirements also must be considered in 
designing a transformation. Thus the "optimal" transformation can vary greatly 
between different computers and even between different configurations of  the same 
computer. 
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