
Theor Chim Acta (1989) 76:187-193 Theoretica
Chimica Acta
�9 Springer-Verlag 1989

An efficient two-electron integral transformation
for vector-concurrent computer architectures

Charles W. Bauschlicher, Jr.
NASA Ames Research Center, Moffett Field, CA 94035, USA

(Received March 18/Accepted March 23, 1989)

Summary. A matrix-multiplication based implementation of the two-electron
integral transformation is compared to the "optimized" algorithm recently
presented by Hurley, Huestis and Goddard. In spite of its poorer operation
count, the matrix-multiplication based program runs significantly faster on
the Alliant FX/8 than the code described by Hurley et al. Our code also uses
much less memory, but requires more disk storage. Trade-offs between the
requirements for disk storage, central memory, number of computing ele-
ments and CPU time are also discussed.

Key words: Two-electron transformation - - Vectorization - - Concurrency
or multiprocessing

1. Introduction

Hurley, Huestis and Goddard [1] (HHG) recently described their implementation
of a two-electron-integral transformation procedure for the Alliant FX/8 com-
puter. In order to decide on the best procedure, HHG first analyzed various
schemes for their approximate floating point operation count. They adopted
what they called the "modified full index symmetry method" since it has the
smallest operation count. They further noted that in this method the inner loop
was executed concurrently on all the processors. As the inner loop is also
vectorized, they were able to make use of both the vector and concurrent features
of the Alliant.

Analyzing the various implementations based solely on operation count
usually leads to the most efficient code on a scalar machine. However, on vector
computers all operations are not equivalent, and therefore the analysis of
operation count and the level of vectorization are coupled. We have developed

188 C.W. Bauschlicher, Jr.

two transformations, the first for the CRAY computers based on matrix multipli-
cation, and a second for the CYBER 205 based on the linked triad operation
Y = Y + a x X (commonly called a SAXPY or DAXPY [2]). The CYBER 205
implementation is similar to that of H H G and holds the transformed integrals in
memory. The implementation for the CRAY is based on the Yoshimine method
[3] and does not require significant core storage. In this article we report on the
performance of our transformation on the Alliant. The matrix multiplication
based transformation was dismissed by H H G due to its operation count, but we
show that it yields superior performance to that reported by HHG.

The code designed by H H G minimizes disk storage, but requires a very large
central memory as all the transformed integral are held in core. On a machine
with several CPUs (each main CPU on the Alliant is called a computing element,
or CE), it is logical to allocate the memory and disk resources based on the
number of CEs actually being used by each job. For example, a job that used
only one of n CPUs should be allowed to use only 1/n of the memory and 1/n of
the disk space. Since the results presented by H H G showed that their transfor-
mation became rather inefficient when the number of CEs was increased from 4
to 8, it would probably be best to limit it to run on 4 CEs and hence use only
half the memory. Thus when a large calculation is to be performed using the
H H G algorithm, one must choose between two unpleasant options: either using
all of the CEs inefficiently for the transformation, or using only 4CEs for the
transformation, and therefore forcing the remaining CEs to run a limited subset
of jobs that require little memory. If a sufficient number of jobs requiring little
memory do not exist, the latter option will also result in inefficient use of some
CEs. It is well known that it is possible to design a transformation that requires
much less memory, but more disk storage than that described by HHG. Since
either memory or disk usage might become the limiting factor, it is clear that
CPU time might not become the sole factor in designing a program. In this
manuscript we discuss such trade-offs as well as the design of the matrix
multiplcation based transformation.

2. Two-electron-integral transformation

The first step in ab initio electronic structure calculations is to compute the
two-electron integrals over atomic (or symmetry) orbitals (AOs), where the
two-electron integrals are given as

= Aijkl

For a basis set of size n, it is clear from this formula that fewer than n 4 integrals
are unique. The list of the n4/8 unique integrals can be formed by ordering the
integrals such that i ~>j and k ~>/, and the compound index/j is greater than or
equal to the compound index kl, where a compound index is defined as
/j = i * (i - 1)/2 + j . In principle it is possible to directly solve the correlation
problem using these integrals; however, in practice it leads to an intractable

Vector-concurrent computer architectures 189

problem. Therefore in a preliminary calculation, an optimal set of molecular
orbitals (MOs), ~b, are determined, where

ck~, = ~ ziC~,.
i = 1

Then an approximate solution to the correlation problem is obtained using these
molecular orbitals. However, in most of these treatments it is beneficial to
transform the two-electron integrals from the AO to MO basis set

Z ~ = ~ Ci= Cj~A;jkt Ck~ G~.
i jkl

The one-electron integrals, H, are transformed in a similar manner

ij

Since the one-electron transformation converts the labels /j into ~/~ it is also
called a two-index transformation. If the one- and two-electron integrals are
transformed one at a time, the processes are of order n 4 and n 8, respectively.
However, it is clear that all of the one-electron integrals can be transformed at
one time by two matrix multiplications

Y = CrHC

thus reducing the process to n 3. In a similar manner, the two-electron transfor-
mation can be reduced to n 5. This is discussed in detail by HHG, and has been
discussed previously by other authors [3-6], and we do not repeat it in detail
here.

We use the methods described by Yoshimine [3] and Bender [4]. The Bender
method is similar to that discussed by H H G and under some circumstances we
use it when there is sufficient space to hold the transformed integrals in memory.
In the Yoshimine algorithm the (ijlkl) integrals are transformed to (/j[~fl) in a
series of two-index transformations. The integrals are then transposed to (aft](j)
and transformed to (ctfl 1~6). In this way the two-electron transformation is
reduced to a series of one-electron-like transformations. Since the integrals are
transformed in a series of steps, at no time are all the transformed integrals held
in memory and therefore only little memory is required. While the memory
required is rather modest, the half-transformed integrals, ((/l~fl), must be held on
disk. Thus the requirements for this transformation are very different from that
of HHG. We now discuss the organization of our transformation.

3. Code organization

In our implementation, we store the two-electron integrals (ijlkl) one row per
record, with all kl values for each/j, that is we ignore the (/ j) - (kl) permutational
symmetry. The row can be stored with zeros included or with only the non-zeros
(and information about their position in the uncompressed row). In all of the

190 C .w . Bauschlicher, Jr.

results reported in this article, the rows are stored with the zeros. The transfor-
mation code is then divided into two half transformations. The first half is
organized as follows:

1) a kl row of two-electron integrals is read,

2) a square matrix of integrals is formed from the lower triangle of kl integrals,

3) the (/j [kl) integrals are transformed to (ijl~fl) with two matrix multiplications,

4) the square matrix of transformed integrals is compressed into a lower triangle
by discarding the redundant integrals, and

5) the transformed integrals are moved into bins and when the bin is full it is
written to disk. This is the first half of the transposition of the integrals to

Steps 1-5 are repeated for each (/.
The second half of the transformation is organized as follows:

6) a batch of integrals are moved from disk into memory finishing the transposi-
tion of the half-transformed integrals,

7) for each ~fl row currently in memory, the transform to (aft 1~6) is completed
using two matrix multiplications, and

8) The block of fully transformed integrals are written to disk.

Steps 6-8 are repeated until all the integrals are transformed.
Unlike HHG we use REAL*8 variables throughout. This is important when

very accurate calculations are to be performed, since as the basis sets become
more complete, higher accuracy in the transformed integrals is required to avoid
numerical problems. The program is all in FORTRAN except for the matrix
multiplication where we use the Alliant library [7] routine "matmul". Using a
FORTRAN matrix multiplication has only a small (about 3%) effect on the time
required. (Note that this is very different from the CRAY computers where the
library matrix multiply is much faster than the FORTRAN code. Further,
unrolling the matrix muliplication on the Alliant degrades performance; this is
also different from the CRAY, where unrolling greatly improves the performance
of the FORTRAN code.) We compile the program with optimization for
vectorization, scalar and concurrency. We run it on one, two and four CEs (our
system has only four CEs). The time (user plus system) is determined using the
library routine [7] "etime". We report some breakdown of the timing using
"gprof" [7].

Memory usage can always be traded for disk storage, but until recently this
was not really practical as central memories were quite limited in size. Now,
however, computers have very large memories and therefore codes can be
designed to use this feature. In the matrix multiply based transformation, the
half-transformed integrals instead of the transformed integrals could be held in

Vector-concurrent computer architectures 191

memory, but this would require more storage than the Bender or H H G methods,
especially in those cases where the number of MOs is significantly less than the
number of AOs. Our method, in addition to using disk space to store the
half-transformed integrals, also uses twice the storage of the AO integrals due to
the elimination of the (ij)-(kl) symmetry. However, as we show below it uses
only about half the CPU time. That is, our code was developed for a system with
a very large disk capacity where CPU time is the limiting factor.

4. Results

Our code is most easily thought of as a series of two-index transformations. Each
two-index transformation is two matrix multiplications which are of order n 3. All
other steps are of order n 2. In addition to these two steps, there is system time
and some time not accounted for with gprof. Therefore we break the timing
down into the three steps, denoted n 2, n ~ and overhead. The timings for the
transformation of the two-electron integrals for C2F 4 and C2F 6 are summarized
in Table 1 along with the results of HHG. For both C:F4 and CEF6, the time for
our implementation on one CE is less than half that reported by HHG. Of the
total time in our transformation 78-82% is spent in matrix multiplication. When
the number of processors is increased, the time in matrix multiplication decreases
with only a small loss of efficiency. However, the overhead and n 2 steps do not
show the same decrease. This is perhaps not too surprising since the IO, and
hence the sort, is not easily done in parallel. The net result is that the overall
transformation shows a significant overhead with concurrency. For two proces-
sors we have an efficiency of 87% and for four it has dropped t o 70%. In the
H H G algorithm the integrals are not sorted, but held in core, and this scheme
therefore shows a performance improvement with number of processors more
like that observed in the matrix multiplication step in our program. The efficiency
is 97%, 88% and 68%, so even their algorithm shows a marked decline in
efficiency when the number of CEs is expanded from 4 to 8. Clearly neither our
code nor that of H H G would be suited to a machine with a very large number
of processors.

There is one additional point that we wish to make. We have shown that by
using a different algorithm the two-electron-integral transformation can be
performed in about half the time reported b y HHG. However, up to this point
we have ignored the use of symmetry. O n a scalar machine one might process
symmetry zeros and accidental zeros in the same manner, but to achieve the best
vectorization the testing of zeros must be eliminated. (Some improvement could
be obtained by using a matrix multiplication that accounts for the sparseness of
the integral or coefficient matrices, but it does not appear possible to account for
sparseness in both matrices efficiently.) However, it is still possible to make use
of the symmetry zeros by sorting the integrals by symmetry blocks, and ordering
them within each block in a manner similar to the no symmetry case. The
integrals are then transformed one symmetry block at a time; in this way one
large transformation is reduced to a series of small transformations. For CzF4,

192

Table 1. The transformation time, in seconds, on the Alliant FX/8

C. W. Bauschlicher, Jr.

1 CE 2 CE

Time %a Time
C2F4 54 basis functions
Present work

4 CE

% Ratio b Time % Ratio

n 3 205 78 104 69
n 2 43 16 31 20
Overhead 14 5 16 11
Total 261 151
HHG c 544 277
HHG/PW d 2.08 1.83

C2F 6 72 basis functions
Present work

1.96 54 57 3.79
1.38 25 26 1.73
0.83 17 18 0.81
1.72 95 2.74
1.96 154 3.53

1.62

n 3 859 82 421 70 2.04 221 60 3.88
n 2 136 13 103 17 1.32 80 21 1.70
Overhead 55 5 77 13 0.71 71 19 0.77
Total 1050 601 1.75 372 2.82
HHG 2170 1132 1.92 625 3.47
HHG/PW 2.07 1.89 1.68

a Percent of the total time
b Ratio is the time for 1 CE divided by the time on n CEs
c HHG [1]
d Ratio of total time for HHG to that in present work

i f D2h s y m m e t r y is used, the t r ans fo rma t ion t ime is reduced to 34 seconds on one
CE. N o t e tha t when symmet ry is used, this case is so small tha t only 4 seconds
are spent in mat r ix mul t ip l ica t ion . Thus in a very large case the use o f symmet ry
will yield an even larger savings. This i l lustrates tha t while using an a lgo r i t hm
tha t vector izes be t te r can m a k e a fac tor o f two improvement , it is ac tua l ly far
be t te r to design the p r o g r a m to m a k e use o f symmetry , in spite o f some a d d e d
complexi ty , since this can represent an o rde r o f magn i tude improvement .

As no ted above we have also imp lemen ted a modi f ied vers ion o f the Bender
m e t h o d (inc luding symmetry) , and our t imes are s imilar to those r epor t ed by
H H G . Tha t is a b o u t a fac tor o f two s lower than the mat r ix mul t ip l i ca t ion based
app roach . I t is in teres t ing to note tha t on a C R A Y X -M P/48 c o m p u t e r (wi th a
9.5 ns clock) the 54 basis set t r a n s f o r m a t i o n requires only a b o u t 10 seconds using
ei ther the mat r ix mul t ip l i ca t ion o r Bender me thod . This is a b o u t 4 t imes faster
than the t r a n s f o r m a t i o n designed for the C R A Y - 1 by Saunders and van Lenthe
[6] (no te we have scaled their C P U t ime by the ra t io 9.5/12.5 to account for the
difference in cycle t ime between the C R A Y - 1 and the C R A Y X-MP) . Thei r
a lgor i thm, like tha t o f H H G , is based on using the (ij)-(kl) p e r m u t a t i o n a l
symmetry , but requires the same s torage o f ha l f - t r ans fo rmed integrals as our
code. The decis ion to implement ei ther the ma t r ix -mul t ip l i ca t ion based me thod
o r the Saunders and van Lenthe on a C R A Y would depend on the p rob lems to
be run and system conf igura t ion . F o r example i f one p l anned to use large A O

Vector-concurrent computer architectures 193

basis sets, but to transform to only limited MO sets on a system that had limited
disk storage, the Saunders and van Lenthe method would probably be the best.
Thus even on a supercomputer one might compromise CPU time for disk storage:
the ideal implementation depends on the specific configuration of the computer
to be used.

In performing calculations on a CYBER 205, we have found that our matrix
multiplication based algorithm worked poorly even for modest sized matrices
because of the large vector overhead. Therefore we have implemented a modified
version of the Bender method, since this produces SAXPY operations with long
vector lengths that are ideally suited for the CYBER 205. This method generally
required significantly less time than the matrix multiplication based approach on
the CYBER 205. Thus, the "optimal" transformation varies due to machine
hardware as well as the specific configuration of memory and disk resources. Since
our code has both the Bender and Yoshimine transformation, the optimal
performance can be obtained on a variety of current computers. Furthermore, we
make explicit use of symmetry, as the formation of two-electron integrals over
symmetry orbitals increases the cost of integral generation only slightly [8],
introduces almost no overhead into calculations, and can represent an order of
magnitude savings in computer time. In spite of this flexibility, the transformation
is one of the simplest codes in our program system.

5. Conclusion

We have shown that a different implementation for the two-electron integral
transformation than that reported by H H G yields superior performance even
though it has a higher operation count. This is an illustration of the need to
consider the combination of the operation count and extent of vectorization when
designing a code for modern vector computers. In addition to the question of CPU
performance, disk storage and memory requirements also must be considered in
designing a transformation. Thus the "optimal" transformation can vary greatly
between different computers and even between different configurations of the same
computer.

References

t. Hurley JN, Huestis DL, Goddard WA (1988) J Phys Chem 92:4880
2. Lawson C, Hanson R, Kincaid D, Krough F (1979) ACM Trans Math Software 5:308
3. YoshimineM (1971)In: LesterWA(ed)Proceedings oftheConferenee on Potential Energy Surfaces

in Chemistry. Report RA-18, IBM Research Laboratory, San Jose, CA, p 87
4. Bender CF (1971) J Compt Phys 9:547
5. Elbert ST (1978) In: Moter C, Shavitt I (eds) Numerical algorithms in chemistry: algebraic methods.

LBL 8158, Lawrence Berkeley Laboratory, University of California, Berkeley, p 129
6. Saunders VR, van Lenthe JH (1983) Mol Phys 48:923
7. FX/FORTRAN Language Manual, Alliant Computer Systems Corporation, Littleton, Mass (1987)
8. Alml6f J (1974) Molecule Program Description. University of Stockholm, Institute of Physics,

Report 74-29

